Abstract

Several undesirable impacts of electromagnetic interference (EMI) have been reported in various applications including not only motor drives but also transformerless photovoltaic (PV) power systems and other applications. These impacts are predominantly due to the converter’s noise source voltage that may lead to higher motor bearing currents and inevitably lead to premature damage. In addition to serious leakage currents in non-isolated grid connected PV systems. In this context, this paper presents the analysis and characterization of the noise source spectra of the commonmode (CM) voltage for a single-stage split-source inverter (SSI) topology incorporating three pulse width modulation (PWM) strategies. The mathematical modeling of the investigated modulation techniques is identified, and the induced noise source voltage is examined. Moreover, the resultant noise source spectra are compared, and the main findings are demonstrated. A MATLAB/Simulink model is used to verify the analysis. It is shown that a significant reduction in the noise source spectra can be attained by applying the proposed modulation strategy especially in the high frequency range, which mainly due to the reduced number of transitions in the noise source voltage profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.