Abstract

In molecular communication (MC), combining different types of particles at the transmitter is a degree of freedom which can be utilized to improve performance. In this paper, we address the problem of pulse shaping to simplify time synchronization requirements by exploiting and combining the received signal characteristics of particles of different sizes. In particular, we optimize the mixture of particles of different sizes used for transmission in order to support a prescribed detection time period for on-off keying, guaranteeing on average 1) a sufficiently large received signal if a binary one is transmitted, and 2) a low enough received signal if a binary zero is transmitted even in the presence of inter-symbol interference. For illustration, we consider an optimization problem based on a free space diffusion channel model. It is shown that there is a tradeoff between the maximum feasible detection duration and the peak detection value for different particle sizes from the smallest particle size enabling the largest detection duration to the largest particle size minimizing the peak detection value at the expense of a limited detection duration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.