Abstract

Nanostructured surface layer was synthesized on the end face of Ti–4Al–2V alloy and 0Cr18Ni9Ti austenite stainless steel rods by means of Surface self-nanocrystallization(SSNC). Making treated end surfaces as bonding interfaces, transition joint of Ti–4Al–2V alloy and 0Cr18Ni9Ti stainless steel bars was prepared by pluse pressuring diffusion bonding (PPDB) on Gleeble-1500D tester at 850°C for 80 s, the maximum and minimum pluse pressuring were 8 MPa and 50 MPa respectively, and cycle (N) and frequency (f) of pulse load were 40 times and 0.5 Hz respectively. Bonded joints were tensed on CMT5105 style instron. Microstructure of transition joint was investigated by scanning electron microscope (SEM) and X-ray energy dispersive spectroscope (EDS). The reaction products on the fracture were detected using X-ray diffraction (XRD). Research results showed that the maximum tensile strength reached 384.0 MPa, cleavage fracture took place while tension test of joints. Brittle intermetallic compounds such as Fe2Ti, FeTi and σ phase presented on the fracture, and on the titanium alloy side, α-Ti transformed into β-Ti in the vicinity of interface while diffusion bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.