Abstract

We introduce a simple method to extend the performance of pulse coding techniques in their application to Brillouin optical time-domain analysis sensors (BOTDA). It is based on applying a simple logarithmic processing on the detected probe wave that compensates the deviation from linearity of the sensor response for long code lengths. The technique ensures that the accumulated effect of a sequence of pulses is equal to the linear addition of the effects of the individual components, which is the essential condition to ensure a correct decoding of the probe gain measurement. We experimentally demonstrate the compensation of the Brillouin frequency shift error induced by the accumulated gain nonlinearity. Furthermore, a proof-of-concept 80km sensing link within a total 200km fiber loop demonstrated a better than 2MHz precision with 2m spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.