Abstract

Increased steady intraluminal pressure in blood vessels activates the extracellular signal-regulated kinase (ERK)1/2 pathway. However, signal transduction of pulsatile stretch has not been elucidated. Using an organ culture model of rabbit aorta, we studied ERK1/2 activation by pulsatility in vessels maintained at 80 mm Hg for 24 hours. ERK1/2 activity was evaluated by in-gel kinase assays and by Western blot. Compared with control aortas without pulsatility, aortas submitted to a pulsatile 10% variation in vessel diameter displayed a significant increase in ERK1/2 activity (207+/-12%, P<0.001), which remained high after removal of the endothelium. Unlike steady overstretch, pulsatile stretch-induced activation of ERK1/2 was not modified by herbimycin A, a Src family tyrosine kinase inhibitor, but was reduced by other tyrosine kinase inhibitors, tyrphostin A48 and genistein (162+/-27% and 144+/-14%, respectively). Conversely, ERK1/2 activity was markedly decreased in pulsatile vessels treated with staurosporine (114+/-18%) although neither of the more specific protein kinase C inhibitors, Ro-31-8220 or Gö-6976, blocked ERK1/2 activation (209+/-24% and 238+/-34%, respectively), whereas staurosporine had no effect on steady overstretch-induced ERK1/2 activation. Pulsatility induced superoxide anion generation, which was prevented by the NADPH oxidase inhibitor diphenyleneiodonium. Furthermore, polyethylene glycol-superoxide dismutase completely abolished ERK1/2 activation by pulsatility (114+/-12%). Finally, ERK1/2 and O(2)(-) levels in freshly isolated vessels were equivalent to the levels found in pulsatile vessels. In conclusion, pulsatile stretch activates ERK1/2 in the arterial wall via pathways different from those induced by steady overstretch. Pulsatility might be considered a physiological stimulus that maintains a certain degree of ERK1/2 activation via oxygen-derived free radical production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.