Abstract

The EPA regulates ambient particulate matter (PM) because substantial associations have been established between PM and health impacts. Presently, regulatory compliance involves broad control of PM emission sources based on mass concentration rather than chemical composition, although PM toxicity is likely to vary depending upon PM physicochemical properties. The overall objective of this study was to help inform source-specific PM emission control regulations. For the first time, source-oriented PM was collected from the atmosphere in Fresno, CA, onto 38 source/size substrates. Mice were exposed via oropharyngeal aspiration to equivalent mass doses [50 μg] of two size fractions: ultrafine (Dp < 0.17 μm) and submicron fine (0.17 < Dp < 1 μm) during summer and winter seasons. At 24 h post-exposure, cellular and biochemical indicators of pulmonary inflammation were evaluated in the bronchoalveolar lavage fluid. Significant inflammatory responses were elicited by vehicle, regional background, and cooking PM sources that were dependent on season and particle size. This is the first study of source-oriented toxicity of atmospheric PM and supports source-specific emissions control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.