Abstract

The NO/ONOO−cycle is a primarily local biochemical/physiological vicious cycle that appears to cause a series of chronic inflammatory diseases. This paper focuses on whether the cycle causes pulmonary arterial hypertension (PAH) when located in the pulmonary arteries. The cycle involves 12 elements, including superoxide, peroxynitrite (ONOO−), nitric oxide (NO), oxidative stress, NF-κB, inflammatory cytokines, iNOS, mitochondrial dysfunction, intracellular calcium, tetrahydrobiopterin depletion, NMDA activity, and TRP receptor activity. 10 of the 12 are elevated in PAH (NMDA?, NO?) and 11 have documented causal roles in PAH. Each stressor that initiates cases of PAH acts to raise cycle elements, and may, therefore, initiate the cycle in this way. PAH involves a primarily local mechanism as required by the cycle and the symptoms and signs of PAH are generated by elements of the cycle. Endothelin-1, which acts as a causal factor in PAH, acts as part of the cycle; its synthesis is stimulated by cycle elements, and it, in turn, increases each element of the cycle. This extraordinary fit to the principles of the NO/ONOO−cycle allows one to conclude that PAH is a NO/ONOO−cycle disease, and this fit supports the cycle as a major paradigm of chronic inflammatory disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.