Abstract

Abstract In this article, pull-in instability of cantilever and fixed–fixed nano-switches subjected to electrostatic forces produced by an applied voltage, and intermolecular forces are investigated. A linear distributed load model is considered to approximately model the nonlinear intermolecular and electrostatic interactions acting on the nano-beam. The effect of small length-scale is taken into account using hybrid nonlocal Euler–Bernoulli beam model. The effects of small length-scale on the pull-in instability and freestanding behavior of the cantilever and fixed–fixed nano-beams are presented and compared with the Eringen's nonlocal and classical beam models. It is found that the Eringen's nonlocal beam model produces unreasonable pull-in voltages, minimum gaps and detachment lengths. It is shown that shortcomings of the Eringen's nonlocal beam theory can be resolved by using hybrid nonlocal beam model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.