Abstract
RNA-binding proteins play critical roles in the regulation of gene expression. Among several families of RNA-binding proteins, PUF (Pumilio and FBF) proteins have been the subject of extensive investigations, as they can bind RNA in a sequence-specific manner and they are evolutionarily conserved among a wide range of organisms. The outstanding feature of these proteins is a highly conserved RNA-binding domain, which is known as the Pumilio-homology domain (PUM-HD) that mostly consists of eight tandem repeats. Each repeat recognizes an RNA base with a simple three-letter code that can be programmed in order to change the sequence-specificity of the protein. Using this tailored architecture, researchers have been able to change the specificity of the PUM-HD and target desired transcripts in the cell, even in subcellular compartments. The potential applications of this versatile tool in molecular cell biology seem unbounded and the use of these factors in pharmaceutics might be an interesting field of study in near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.