Abstract

The clinical use of BRAF inhibitors in patients with melanoma is limited by intrinsic and acquired resistance. We asked whether next-generation sequencing of pretreatment tumors could identify coaltered genes that predict for intrinsic resistance to BRAF inhibitor therapy in patients with melanoma as a prelude to rational combination strategies. We analyzed 66 tumors from patients with metastatic BRAF-mutant melanoma collected before treatment with BRAF inhibitors. Tumors were analyzed for > 250 cancer-associated genes using a capture-based next-generation sequencing platform. Antitumor responses were correlated with clinical features and genomic profiles with the goal of identifying a molecular signature predictive of intrinsic resistance to RAF pathway inhibition. Among the 66 patients analyzed, 11 received a combination of BRAF and MEK inhibitors for the treatment of melanoma. Among the 55 patients treated with BRAF inhibitor monotherapy, objective responses, as assessed by Response Evaluation Criteria in Solid Tumors (RECIST), were observed in 30 patients (55%), with five (9%) achieving a complete response. We identified a significant association between alterations in PTEN that would be predicted to result in loss of function and reduced progression-free survival, overall survival, and response grade, a metric that combines tumor regression and duration of treatment response. Patients with melanoma who achieved an excellent response grade were more likely to have an elevated BRAF-mutant allele fraction. These results provide a rationale for cotargeting BRAF and the PI3K/AKT pathway in patients with BRAF-mutant melanoma when tumors have concurrent loss-of-function mutations in PTEN. Future studies should explore whether gain of the mutant BRAF allele and/or loss of the wild-type allele is a predictive marker of BRAFi sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.