Abstract

Platinum nanowires were prepared via a template-synthesis method by electrodeposition of platinum within pores of a track-etched polycarbonate (PCTE) membrane, followed by chemical etching to separate the Pt nanowires from the polymer. The structure and morphology of the Pt nanowires were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM), revealing a polycrystalline phase with nanowire dimension up to 6 μm long and ca. 47 ± 9.8 nm of diameter. The unsupported Pt nanowires showed the better electrochemical mass activities over the methanol electro-oxidation than supported or unsupported Pt nanoparticles under the high Pt content-loaded conditions that is typically required for direct methanol fuel cells. This enhancement could be rationalized by its unique physicochemical and electrical properties arising from the inherent anisotropic one-dimensional (1D) nanostructure, such as charge transfer facilitation by reducing number of particle interfaces and more efficient use of Pt by alleviating fraction of embedded catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.