Abstract

Concern over the occurrence of pharmaceuticals and their metabolites in the environment is mounting due to the potential adverse effects on nontarget organisms. This study draws upon a nationwide survey of psychoactive pharmaceuticals (i.e., antischizophrenics, anxiolytics, and antidepressants) in sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic, industrial, or mixed (domestic plus industrial) wastewaters in Korea. A total of 16 psychoactive pharmaceuticals (0.12-460 ng/g dry weight) and nine of their metabolites (0.97-276 ng/g dry weight) were determined in sludge. The median concentrations of psychoactive drugs in sludge from domestic WWTPs were 1.2-3.2 times higher than the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the psychoactive drugs analyzed, the median environmental emission rates of alprazolam (APZ) and carbamazepine (CBZ) through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be ≥ 15.5 μg/capita/day, followed by quetiapine (QTP; 8.51 μg/capita/day), citalopram (CLP; 5.45 μg/capita/day), and venlafaxine (VLF; 3.59 μg/capita/day). The per-capita emission rates of some of the metabolites of psychoactive drugs through WWTP discharges were higher than those calculated for parent compounds. Significant correlations (ρ = 0.432-0.780, p < 0.05) were found between the concentrations of typically coprescribed antischizophrenics and antidepressants in sludge. Multiple linear regression analysis of measured concentrations of drugs in sludge revealed that several WWTP parameters such as treatment capacity, population-served, sludge production rate, composition of wastewater (domestic versus industrial), and hydraulic retention time can affect the concentrations of psychoactive drugs in sludge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.