Abstract

We present PSO-PARSIMONY, a new methodology to search for parsimonious and highly accurate models by means of particle swarm optimization. PSO-PARSIMONY uses automatic hyperparameter optimization and feature selection to search for accurate models with low complexity. To evaluate the new proposal, a comparative study with multilayer perceptron algorithm was performed with public datasets and by applying it to predict two important parameters of the force–displacement curve in T-stub steel connections: initial stiffness and maximum strength. Models optimized with PSO-PARSIMONY showed an excellent trade-off between goodness-of-fit and parsimony. The new proposal was compared with GA-PARSIMONY, our previously published methodology that uses genetic algorithms in the optimization process. The new method needed more iterations and obtained slightly more complex individuals, but it performed better in the search for accurate models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.