Abstract
This survey presents a generalization of the notion of a toric structure on a compact symplectic manifold: the notion of a pseudotoric structure. The language of these new structures appears to be a convenient and natural tool for describing many non-standard Lagrangian submanifolds and cycles (Chekanov's exotic tori, Mironov's cycles in certain particular cases, and others) as well as for constructing Lagrangian fibrations (for example, special fibrations in the sense of Auroux on Fano varieties). Known properties of pseudotoric structures and constructions based on these properties are discussed, as well as open problems whose solution may be of importance in symplectic geometry and mathematical physics. Bibliography: 28 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.