Abstract

For Legendrian submanifolds Mn in Sasakian space forms ?M2n+1(c), I. Mihai obtained an inequality relating the normalised scalar curvature (intrinsic invariant) and the squared mean curvature and the normalised scalar normal curvature of M in the ambient space ?M (extrinsic invariants) which is called the generalised Wintgen inequality, characterising also the corresponding equality case. And a Legendrian submanifold Mn in Sasakian space forms ?M2n+1(c) is said to be generalised Wintgen ideal Legendrian submanifold of ?M2n+1(c) when it realises at everyone of its points the equality in such inequality. Characterisations based on some basic intrinsic symmetries involving the Riemann-Cristoffel curvature tensor, the Ricci tensor and the Weyl conformal curvature tensor belonging to the class of pseudosymmetries in the sense of Deszcz of such generalised Wintgen ideal Legendrian submanifolds are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.