Abstract

The pseudo-randomness and complexity of binary sequences generated by chaotic systems are investigated in this paper. These chaotic binary sequences can have the same pseudo-randomness and complexity as the chaotic real sequences that are transformed into them by the use of Kohda’s quantification algorithm. The statistical test, correlation function, spectral analysis, Lempel–Ziv complexity and approximate entropy are regarded as quantitative measures to characterize the pseudo-randomness and complexity of these binary sequences. The experimental results show the finite binary sequences generated by the chaotic systems have good properties with the pseudo-randomness and complexity of sequences. However, the pseudo-randomness and complexity of sequence are not added with the increase of sequence length. On the contrary, they steadily decrease with the increase of sequence length in the criterion of approximate entropy and statistical test. The constraint of computational precision is a fundamental reason resulting in the problem. So only the shorter binary sequences generated by the chaotic systems are suitable for modern cryptography without other way of adding sequence complexity in the existing computer system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.