Abstract

We give new pseudorandom generators for regular read-once branching programs of small width. A branching program is regular if the in-degree of every vertex in it is either 0 or 2, except for the first layer. For every width $d$ and length $n$, our pseudorandom generator uses a seed of length $O((\log d + \log\log n + \log(1/\epsilon))\log n)$ to produce $n$ bits that cannot be distinguished from a uniformly random string by any regular width $d$ length $n$ read-once branching program, except with probability $\epsilon$. We also give a result for general read-once branching programs, in the case that there are no vertices that are reached with small probability. We show that if a (possibly nonregular) branching program of length $n$ and width $d$ has the property that every vertex in the program is traversed with probability at least $\gamma$ on a uniformly random input, then the error of the generator above is at most $2 \epsilon/\gamma^2$. Finally, we show that the set of all binary strings with less th...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.