Abstract

Pseudomonas aeruginosa, an important opportunistic pathogen of man, exploits numerous factors for initial attachment to the host, an event required to establish bacterial infection. In this paper, we rigorously explore the role of two major bacterial adhesins, type IV pili (Tfp) and flagella, in bacterial adherence to distinct host receptors at the apical (AP) and basolateral (BL) surfaces of polarized lung epithelial cells and induction of subsequent host signaling and pathogenic events. Using an isogenic mutant of P. aeruginosa that lacks flagella or utilizing beads coated with purified Tfp, we establish that Tfp are necessary and sufficient for maximal binding to host N-glycans at the AP surface of polarized epithelium. In contrast, experiments utilizing a P. aeruginosa isogenic mutant that lacks Tfp or using beads coated with purified flagella demonstrate that flagella are necessary and sufficient for maximal binding to heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs) at the BL surface of polarized epithelium. Using two different cell-free systems, we demonstrate that Tfp-coated beads show highest binding affinity to complex N-glycan chains coated onto plastic plates and preferentially aggregate with beads coated with N-glycans, but not with single sugars or HS. In contrast, flagella-coated beads bind to or aggregate preferentially with HS or HSPGs, but demonstrate little binding to N-glycans. We further show that Tfp-mediated binding to host N-glycans results in activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway and bacterial entry at the AP surface. At the BL surface, flagella-mediated binding to HS activates the epidermal growth factor receptor (EGFR), adaptor protein Shc, and PI3K/Akt, and induces bacterial entry. Remarkably, flagella-coated beads alone can activate EGFR and Shc. Together, this work provides new insights into the intricate interactions between P. aeruginosa and lung epithelium that may be potentially useful in the development of novel treatments for P. aeruginosa infections.

Highlights

  • Pseudomonas aeruginosa is an opportunistic human pathogen associated with a broad spectrum of life-threatening infections in the setting of epithelial injury and immunocompromise

  • We demonstrate that Tfp are necessary and sufficient to mediate maximal bacterial binding to N-glycans at the AP surface, while flagella are necessary and sufficient to mediate maximal bacterial binding to heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs) at the BL surface of polarized airway epithelium

  • Combined heparinase III treatment and epidermal growth factor receptor (EGFR) inhibition reduced P. aeruginosa strain O1 (PAO1) and PAO1DpilA internalization to a greater degree than inhibition of EGFR alone (Figures 4A and B). These results suggest that bacterial internalization occurs through multiple HSPG-dependent pathways, including one that involves a flagella-HS-EGFR complex leading to phosphatidylinositol 3-kinase (PI3K) activation at the BL surface of polarized epithelium

Read more

Summary

Introduction

Pseudomonas aeruginosa is an opportunistic human pathogen associated with a broad spectrum of life-threatening infections in the setting of epithelial injury and immunocompromise (reviewed in [1]). This gram-negative pathogen ranks among the leading causes of hospital-acquired pneumonia, urinary tract infections, bloodstream infections, and surgical site infections. In addition to their frequent occurrence, nosocomial P. aeruginosa infections are often severe, with an excess attributable mortality rate of almost 50% for mechanically ventilated patients with P. aeruginosa pneumonia [2]. Increasing our understanding of the pathogenesis of P. aeruginosa infections is critical for the development of new therapeutics that target this medically important pathogen

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.