Abstract

The stress-induced B2–B19′ transformation in aged 51 at.% NiTi was investigated using in situ straining transmission electron microscopy (TEM). Increased applied strain along [110]B2 transforms B2 into plates containing B19′ variants that are related by a (110)B2 compound twin plane. This atypical twin plane is explained by relaxing the invariant plane constraint in the crystallographic theory of martensite (CTM) to an invariant line constraint. The relaxation is rationalized from the thin foil geometry. The relaxed CTM approach, coupled with conditions to maximize transformation strain along the loading axis and minimize elastic energy, predicts the observed twin interface, diffraction patterns, and interface with the B2 austenite. These results demonstrate subtleties in interpreting thin foil TEM results regarding martensitic transformations, and translating those results to bulk response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.