Abstract

Mono- and diaza-derivatives of malondialdehydes, namely 3-alkyl(aryl)amino-2-arylacroleins and 1,5-dialkyl(aryl)-3-arylvinamidines are open-chain systems in which extended electron delocalization and pseudoaromaticity can be envisaged. A set of diversely functionalized compounds has been synthesized and characterized by spectroscopic data and X-ray diffractometry. Quantum-chemical calculations were performed for all possible neutral tautomers and conformers in the gas phase and compared to those in polar solvents (CHCl3, DMSO, and EtOH) at the M06-2X/6-311++G(d,p) level. Tautomeric equilibria and conformational preferences can be rationalized in terms of structural factors, which can be roughly estimated as summation or subtractions of intramolecular interactions. As expected, a key role is played by intramolecular hydrogen bonds whose strength varies from the gas phase to polar ethanol. This issue also delves into the concept of resonance-assisted H-bond, where the donor and acceptor atoms are connected by a π-conjugated system. The most stable conformers (structures a and c) possess a high degree of pseudoaromaticity as inferred from HOMA indexes and other delocalization parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.