Abstract

Dynamic analysis of the molecules with large-amplitude motions (LAM) based on the pseudo-conformer approach has been successfully applied to various molecules. Floppy linear molecules present a special class of molecular structures that possess a pair of conjugate LAM coordinates but allow one-dimensional treatment. In this paper, previously developed treatment for the semirigid molecules is applied to the carbon suboxide molecule. This molecule characterized by the extremely large CCC bending has been thoroughly investigated by spectroscopic and ab initio methods. However, the earlier electron diffraction investigations were performed within a static approach, obtaining thermally averaged parameters. In this paper we apply a procedure aimed at obtaining the short list of self-consistent reference geometry parameters of a molecule, while all thermally averaged parameters are calculated based on reference geometry, relaxation dependencies and quadratic and cubic force constants. We show that such a model satisfactorily describes available electron diffraction evidence with various QC bending potential energy functions when r.m.s. CCC angle is in the interval 151 ± 2°. This leads to a self-consistent molecular model satisfying spectroscopic and GED data. The parameters for linear reference geometry have been defined as re(CO) = 1.161(2) Å and re(CC) = 1.273(2) Å.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.