Abstract

Previous experiments with low dimensional data sets have shown that Gabriel graph methods for instance-based learning are among the best machine learning algorithms for pattern classification applications. However, as the dimensionality of the data grows large, all data points in the training set tend to become Gabriel neighbors of each other, bringing the efficacy of this method into question. Indeed, it has been conjectured that for high-dimensional data, proximity graph methods that use sparser graphs, such as relative neighbor graphs (RNG) and minimum spanning trees (MST) would have to be employed in order to maintain their privileged status. Here the performance of proximity graph methods, in instance-based learning, that employ Gabriel graphs, relative neighborhood graphs, and minimum spanning trees, are compared experimentally on high-dimensional data sets. These methods are also compared empirically against the traditional k-NN rule and support vector machines (SVMs), the leading competitors of proximity graph methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.