Abstract

The conventional theory of superconductivity holds that Cooper pairs form due to electron–phonon coupling; however, this description may not be adequate to describe certain unconventional superconductors such as cuprates and iron chalcogenides. In these unconventional superconductors, it has been proposed that spin fluctuations may be responsible for the formation of Cooper pairs. In this study, we explore spin interactions in the transition metal, dichalcogenide niobium disulfide, induced through proximity effects by fabricating antiferromagnet/NbS2 heterostructures. We tested three different 2D antiferromagnetic materials, each with different spin textures: anganese phosphorus trisulfide, manganese phosphorus triselenide, and chromium trichloride. Our results showed a substantial reduction in the critical temperature in the case of NbS2/MnPSe3. We hypothesize that this could be due to spin fluctuations in MnPSe3 inducing proximity effects in NbS2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.