Abstract

Superconducting quantum interference devices (SQUIDs) incorporating thin film nanobridges as weak links have sensitivities approaching that required for single spin detection at 4.2 K. However, due to thermal hysteresis they are difficult to operate at much lower temperatures which hinder their application to many quantum measurements. To overcome this, we have developed nanoscale SQUIDs made from titanium-gold proximity bilayers. We show that their electrical properties are consistent with a theoretical model developed for heat flow in bilayers and demonstrate that they enable magnetic measurements to be made on a sample at system temperatures down to 60 mK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.