Abstract

It is commonly the case in biochemical modelling that we have knowledge of the qualitative 'structure' of a model and some measurements of the time series of the variables of interest (concentrations and fluxes), but little or no knowledge of the model's parameters. This is, then, a system identification problem, that is commonly addressed by running a model with estimated parameters and assessing how far the model's behaviour is from the 'target' behaviour of the variables, and adjusting parameters iteratively until a good fit is achieved. The issue is that most of these problems are grossly underdetermined, such that many combinations of parameters can be used to fit a given set of variables. We introduce the constraint that the estimated parameters should be within given bounds and as close as possible to stated nominal values. This deterministic 'proximate parameter tuning' algorithm turns out to be exceptionally effective, and we illustrate its utility for models of p38 signalling, of yeast glycolysis and for a benchmark dataset describing the thermal isomerisation of alpha-pinene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.