Abstract

The development of spectral X-ray computed tomography (CT) using binned photon-counting detectors has received great attention in recent years and has enabled selective imaging of contrast agents loaded with K-edge materials. A practical issue in implementing this technique is the mitigation of the high-noise levels often present in material-decomposed sinogram data. In this work, the spectral X-ray CT reconstruction problem is formulated within a multi-channel (MC) framework in which statistical correlations between the decomposed material sinograms can be exploited to improve image quality. Specifically, a MC penalized weighted least squares (PWLS) estimator is formulated in which the data fidelity term is weighted by the MC covariance matrix and sparsity-promoting penalties are employed. This allows the use of any number of basis materials and is therefore applicable to photon-counting systems and K-edge imaging. To overcome numerical challenges associated with use of the full covariance matrix as a data fidelity weight, a proximal variant of the alternating direction method of multipliers is employed to minimize the MC PWLS objective function. Computer-simulation and experimental phantom studies are conducted to quantitatively evaluate the proposed reconstruction method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.