Abstract

Development of bone scaffolds with excellent osteogenic potential is highly important for stem cell-based bone engineering. Here we developed novel scaffolds made of poly(lactic acid) (PLA) biopolymer with bioactive glass nanocomponent. In vitro bone bioactivity and osteogenic potential of the nanocomposite scaffolds were determined using bone marrow mesenchymal stem cells. Glass nanocomponent was evenly embedded within the PLA matrix while preserving the scaffold pore structure. Simulated body fluid (SBF) test revealed rapid induction of bone mineral-like apatite over the surface of the nanocomposite scaffold, which was not readily observed in the PLA. Cells adhered well onto the nanocomposite scaffold and multiplied during culture period. Nanocomposite scaffold significantly stimulated alkaline phosphatase (ALP) activity and the expression of bone-associated genes (collagen I, ALP, osteopontin and osteocalcin) with respect to PLA. Western blot analysis confirmed the osteogenic protein level was also higher on the nanocomposite scaffold. Results suggest that the nanocomposite scaffolds provide favorable conditions for osteogenesis of MSCs and thus find potential uses in bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.