Abstract

The scientific study of quartz grains is a powerful tool in deciphering the depositional environment and mode of transportation of sediments, and ultimately the origin and classification of sediments. Surface microfeatures, angularity, chemical features, and grain-size analysis of quartz grains, collectively reveal the sedimentary and physicochemical processes that acted on the grains during different stages of their geological history. Here, we apply scanning electron microscopic (SEM) analysis to evaluating the sedimentary provenance, modes of transport, weathering characteristics, alteration, and sedimentary environment of selected detrital quartz grains from the peripheral part of two epi-shelf lakes (ESL-1 and ESL-2) of the Schirmacher Oasis of East Antarctica. Our study reveals that different styles of physical weathering, erosive signatures, and chemical precipitation variably affected these quartz grains before final deposition as lake sediments. Statistical analysis (central tendencies, sorting, skewness, and kurtosis) indicates that these quartz-bearing sediments are poorly sorted glaciofluvial sediments. Saltation and suspension seem to have been the two dominant modes of transportation, and chemical analysis of these sediments indicates a gneissic provenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.