Abstract

So far we have shown, through various preliminary imaging experiments with small-animal ankle’s and human finger’s joints both healthy and joint-diseased, that early diagnosis for joint disease such as rheumatoid arthritis (RA) is feasible using a transillumination laser CT. For a practical purpose, we have recently proposed and developed a transillumination laser CT imaging system using optical fibers based on the optical heterodyne detection method for a clinical use. In the proposed system, motion-artifact free images can be obtained because measurements can be performed with the object fixed. In addition, use of fiber-optics enables portability, and robustness against environmental changes in a room, such as variable temperature, air-flow shifts, and unexpected vibrations. The imaging system has the following sensing properties: spatial resolution of 500 &mu;m, a dynamic range of approximately 120 dB, and a minimum-detectable-optical power of 10<sup>-14</sup> W as a result of the excellent properties of the heterodyne detection technique. In the present paper, we describe a prototype laser CT imaging system using optical fibers for early diagnosis of joint disease such as rheumatoid arthritis by demonstrating the first in vivo tomographic image of a volunteer’s index finger joint as well as the fundamental imaging properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.