Abstract
A method for polyethylene glycol-induced protoplast transformation of glutamate-producing bacteria with plasmid DNA was established. Protoplasts were prepared from cells grown in the presence of penicillin by treatment with lysozyme in a hypertonic medium. The concentration of penicillin during growth affected the efficiency of formation, regeneration, and polyethylene glycol-induced DNA uptake of protoplasts. Regeneration of protoplasts was accomplished on a hypertonic agar medium containing sodium succinate and yeast extract. The spectinomycin and streptomycin resistance plasmid pCG4, originally from Corynebacterium glutamicum T250, could transform various glutamate-producing bacteria such as C. glutamicum, Corynebacterium herculis, Brevibacterium flavum, and Microbacterium ammoniaphilum. The plasmid was structurally unchanged and stably maintained in new hosts. The transformation frequency of most competent protoplasts with pCG4 DNA isolated from primary transformants was high (ca. 10(6) transformants per microgram of covalently closed circular DNA) but was still two orders of magnitude below the frequency of transfection with modified DNA of the bacteriophage phi CGI. The difference was ascribed to the involvement of regeneration in transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.