Abstract

Ion injection controlled by an electric field is a powerful method to manipulate the diverse physical and chemical properties of metal oxides. However, the dynamic control of ion concentrations and their correlations with lattices in perovskite systems have not been fully understood. In this study, we systematically demonstrate the electric-field-controlled protonation of La2/3Sr1/3MnO3 (LSMO) films. The rapid and room-temperature protonation induces a colossal lattice expansion of 9.35% in tensile-strained LSMO, which is crucial for tailoring material properties and enabling a wide range of applications in advanced electronics, energy storage, and sensing technologies. This large expansion in the lattice is attributed to the higher degree of proton diffusion, resulting in a significant elongation in the Mn-O bond and octahedral tilting, which is supported by results from density functional theory calculations. Interestingly, such a colossal expansion is not observed in LSMO under compressive strain, indicating the close dependence of ion-electron-lattice coupling on strain states. These efficient modulations of the lattice and magnetoelectric functionalities of LSMO via proton diffusion offer a promising avenue for developing multifunctional iontronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.