Abstract

We have recently shown that poly(2,5-pyridine diyl) (PPY) can be synthesized to yield a polymer with high photoluminescence quantum yield (PLQY) in the solid state, and that it is an excellent electron transport material. To explore the photophysical properties of PPY further, we have used a range of acidic “dopants” to protonate the nitrogen sites on each ring and made observations on how this affects the optical properties of the resultant protonated PPY films. In general, we find that sulphonic acids have the greatest effect, causing perturbations to both the ground-state and excited-state properties of the PPY. These changes occur with only moderate reduction of the PLQY, whereas nonsulphonic acids cause a larger reduction in PLQY without significantly affecting the ground- or excited-state energy levels. These aspects of the photophysics of PPY can be described using a simple ring torsion argument. This model can also account for the observed shifts between solution state and solid-state emission wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.