Abstract
13C nuclear magnetic resonance (NMR) of methotrexate, trimethoprim and pyrimethamine enriched 90% with 13C at C2 has provided a sensitive means of detecting the state of protonation of the heterocyclic rings of these inhibitors. In each case, protonation of N1 causes an upfield movement of the chemical shift of C2 by more than 6 ppm. By this method it has been shown that, at pH values up to 9.2, methotrexate is bound to bovine liver dihydrofolate reductase with N1 of the inhibitor protonated, just as in the case of the complex with reductase from Streptococcus faecium and Lactobacillus casei. Furthermore, trimethoprim bound to reductase from any of the three sources, and pyrimethamine bound to either of the bacterial reductases also have N1 protonated even at pH values up to 10. This implies that in all cases there is a strong interaction between protonated N1 of the inhibitor and the carboxylate group of the active site aspartate or glutamate. In every case p K a of the bound inhibitor is increased by several units, a finding in accord with crystallographic evidence that inhibitor bound to L. casei reductase is in a hydrophobic environment and that N1 is not hydrogen-bonded to water. It was confirmed by titration of protein fluorescence that trimethoprim has greater affinity for bacterial reductase than for vertebrate (bovine) reductase, and that this selectivity is more marked in ternary complexes in which NADPH is also bound to the active site. However, the data cited above indicate that this difference in affinities is not due to a weaker ionic interaction between protonated N1 of trimethoprim and the bovine enzyme. Instead, binding of the trimethoprim side chain to hydrophobic sites on the enzyme must provide less binding energy in the case of the mammalian enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.