Abstract

Proton NMR spectra of urine from subjects with multiple acyl-CoA dehydrogenase deficiency, caused by defects in either the electron transport flavoprotein or electron transport flavoprotein ubiquinone oxidoreductase, provide a characteristic and possibly diagnostic metabolite profile. The detection of dimethylglycine and sarcosine, intermediates in the oxidative degradation of choline, should discriminate between multiple acyl-CoA dehydrogenase deficiency and related disorders involving fatty acid oxidation. The excretion rates of betaine, dimethylglycine (and sarcosine) in these subjects give an estimate of the minimum rates of both choline oxidation and methyl group release from betaine and reveal that the latter is comparable with the calculated total body methyl requirement in the human infant even when choline intake is very low. Our results provide a new insight into the rates of in vivo methylation in early human development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.