Abstract
A 50 keV proton injector utilizing a dc microwave source has been used to operate a 1.25 MeV continuous wave (cw) radio-frequency quadrupole (RFQ) accelerator. RFQ injection places stringent requirements on beam properties including centroid control, emittance, and phase-space matching. The ion source chosen for these applications is based on a microwave discharge operating at 2.45 GHz with an on-axis magnetic field near 875 G. The injector employs a space-charge-neutralized, two-solenoid-lens, low-energy beam transport (LEBT) system. Proton injector development with a 1.25 MeV RFQ has resulted in meeting the RFQ 75 mA design current specification in cw mode. Details of the ion source and LEBT operation are presented, and simulations for ion beam extraction and transport are compared with the injector measurements. The proton injector has been converted to 75 keV beam operation for injecting into a 6.7 MeV cw RFQ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.