Abstract

Natural zircon is irradiated internally by U and Th impurities. After exposure to ionizing irradiation zircon exhibits thermoluminescence (TL), which can be used to calculate the irradiation dose and the sample age. A kinetic model for TL of zircon developed earlier is used to model the processes relevant for dating. The response of zircon to irradiation at different dose rates is simulated for different temperatures. Several scenarios for the dating procedure are considered, including laboratory added irradiation, fading and preheat. It is shown that by irradiating the sample at elevated temperatures one can imitate natural irradiation, i.e. it is possible to reproduce the structural state of the trap system (distribution functions of filled electron and hole traps), which is responsible for the TL behavior. This implies that the dose dependence of the TL signal from samples, which had been irradiated under natural conditions, can be produced by irradiation at an elevated temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.