Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) has been demonstrated in both laboratories and field-tests using attenuated lasers combined with the decoy-state technique. Although researchers have studied various decoy-state MDI-QKD protocols with two or three decoy states, a clear comparison between these protocols is still missing. This invokes the question of how many types of decoy states are needed for practical MDI-QKD. Moreover, the system parameters to implement decoy-state MDI-QKD are only partially optimized in all previous works, which casts doubt on the actual performance of former demonstrations. Here, we present analytical and numerical decoy-state methods with one, two and three decoy states. We provide a clear comparison among these methods and find that two decoy states already enable a near optimal estimation and more decoy states cannot improve the key rate much in either asymptotic or finite-data settings. Furthermore, we perform a full optimization of system parameters and show that full optimization can significantly improve the key rate in the finite-data setting. By simulating a real experiment, we find that full optimization can increase the key rate by more than one order of magnitude compared to non-optimization. A local search method to optimize efficiently the system parameters is proposed. This method can be four orders of magnitude faster than a trivial exhaustive search to achieve a similar optimal key rate. We expect that this local search method could be valuable for general fields in physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.