Abstract

BackgroundJasmonic acid (JA) and its derivative, methyl JA (MeJA) are hormonal cues released by plants that signal defense response to curb damages from biotic and abiotic stresses. To study such response, a tropical herbal plant, Persicaria minor, which possesses pungent smell and various bioactivities including antimicrobial and anticancer, was treated with MeJA. Such elicitation has been performed in hairy root cultures and plants such as Arabidopsis and rice, yet how MeJA influenced the proteome of an herbal species like P. minor is unknown.MethodIn this study, P. minor plants were exogenously elicited with MeJA and leaf samples were subjected to SWATH-MS proteomics analysis. A previously published translated transcriptome database was used as a reference proteome database for a comprehensive protein sequence catalogue and to compare their differential expression.ResultsFrom this proteomics informed by transcriptomics approach, we have successfully profiled 751 proteins of which 40 proteins were significantly different between control and MeJA-treated samples. Furthermore, a correlation analysis between both proteome and the transcriptome data sets suggests that significantly upregulated proteins were positively correlated with their cognate transcripts (Pearson’s r = 0.677) while a weak correlation was observed for downregulated proteins (r = 0.147).DiscussionMeJA treatment induced the upregulation of proteins involved in various biochemical pathways including stress response mechanism, lipid metabolism, secondary metabolite production, DNA degradation and cell wall degradation. Conversely, proteins involved in energy expensive reactions such as photosynthesis, protein synthesis and structure were significantly downregulated upon MeJA elicitation. Overall protein-transcript correlation was also weak (r = 0.341) suggesting the existence of post-transcriptional regulation during such stress. In conclusion, proteomics analysis using SWATH-MS analysis supplemented by the transcriptome database allows comprehensive protein profiling of this non-model herbal species upon MeJA treatment.

Highlights

  • Plants are sessile and rely on hormonal cues for response against stresses

  • From this proteomics informed by transcriptomics approach, we have successfully profiled 751 proteins of which 40 proteins were significantly different between control and methyl JA (MeJA)-treated samples

  • This study aims to profile the proteome of P. minor leaf using SWATH-MS analysis to study the effects of MeJA treatment

Read more

Summary

Introduction

Plants are sessile and rely on hormonal cues for response against stresses. Jasmonic acid (JA) and its methylated form, methyl JA (MeJA) are among the critical hormones for such defense roles and plant adaptation. Jasmonic acid (JA) and its derivative, methyl JA (MeJA) are hormonal cues released by plants that signal defense response to curb damages from biotic and abiotic stresses To study such response, a tropical herbal plant, Persicaria minor, which possesses pungent smell and various bioactivities including antimicrobial and anticancer, was treated with MeJA. Pathway enrichment analysis using KOBAS revealed that the top most enriched biological pathways in our proteome dataset were metabolism (corrected p-value of 1.79E–130), metabolic pathways (corrected p-value of 3.66E–85), carbon metabolism (corrected p-value of 3.66E–79), metabolism of proteins (corrected p-value of 8.00E–49) as well as metabolism of amino acids and derivatives (corrected p-value of 1.51E–47) (Table 1) Among these identified proteins, 40 proteins were found to be differentially expressed between control and MeJA treated samples (Table 2) with a cut-off value of greater than 1.5-fold or lesser than 0.67-fold differences.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.