Abstract

BackgroundX-linked retinoschisis (XLRS) is a vitreoretinal degenerative disorder causing vision deterioration, due to structural defects in retina. The hallmark of this disease includes radial streaks arising from the fovea and splitting of inner retinal layers (schisis). Although these retinal changes are attributed to mutations in the retinoschisin gene, schisis is also observed in patients who do not carry mutations. In addition, the origin of intraschisis fluid, the triggering point of schisis formation and its progression are largely unknown still. So far, there is no report on the complete proteomic analysis of this fluid. Schisis fluid proteome could reflect biochemical changes in the disease condition, helping in better understanding and management of retinoschisis. Therefore it was of interest to investigate the intraschisis fluid proteome using high-resolution mass spectrometry.MethodsTwo male XLRS patients (aged 4 and 40 years) underwent clinical and genetic evaluation followed by surgical extraction of intraschisis fluids. The two fluid samples were resolved on a SDS-PAGE and the processed peptides were analyzed by Q-Exactive plus hybrid quadrupole-Orbitrap mass spectrometry. Functional annotation of the identified proteins was performed using Ingenuity pathway analysis software.ResultsMass spectrometry analysis detected 770 nonredundant proteins in the intraschisis fluid. Retinol dehydrogenase 14 was found to be abundant in the schisis fluid. Gene ontology based analysis indicated that 19% of the intraschisis fluid proteins were localized to the extracellular matrix and 15% of the proteins were involved in signal transduction. Functional annotation identified three primary canonical pathways to be associated with the schisis fluid proteome viz., LXR/RXR activation, complement system and acute phase response signalling, which are involved in immune and inflammatory responses. Collectively, our results show that intraschisis fluid comprises specific inflammatory proteins which highly reflect the disease environment.ConclusionBased on our study, it is suggested that inflammation might play a key role in the pathogenesis of XLRS. To our knowledge, this is the first report describing the complete proteome of intraschisis fluid, which could serve as a template for future research and facilitate the development of therapeutic modalities for XLRS.

Highlights

  • X-linked retinoschisis (XLRS) is a vitreoretinal degenerative disorder causing vision deterioration, due to structural defects in retina

  • Schisis fluid proteome analysis The schisis fluids collected from the two XLRS patients were individually processed and analyzed by high resolution mass spectrometry

  • The proteins were arranged according to their normalised spectral abundance factor (NSAF) value, which is a labelfree method for effective protein quantification

Read more

Summary

Introduction

X-linked retinoschisis (XLRS) is a vitreoretinal degenerative disorder causing vision deterioration, due to structural defects in retina The hallmark of this disease includes radial streaks arising from the fovea and splitting of inner retinal layers (schisis). X-linked retinoschisis (XLRS) is a vitreoretinal disorder causing visual deterioration in the affected individuals, Sudha et al Clin Proteom (2017) 14:13 revealed that the gene product retinoschisin (RS1) is a cell–cell adhesion protein which likely helps in maintaining the structural organization of retina [3, 4]. Though extensive in vitro research at the molecular level has provided us profound insight on the expression and secretion of mutant retinoschisin, the actual proteomic changes in the affected eye has not been examined in detail [5, 8] One such approach would be the analysis of intraschisis cavity fluid collected from XLRS patient. As compositional analysis of the schisis fluid is critical to understand the biochemical changes in the diseased eye, a comprehensive proteomic profiling is necessary to get a clue on the catalogue of putative biomarkers expressed and this could improve our knowledge on disease pathology as well as aid in developing therapeutic measures

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.