Abstract
It has recently become apparent that the Type VI secretion system (T6SS) is a complex macromolecular machine used by many bacterial species to inject effector proteins into eukaryotic or bacterial cells, with significant implications for virulence and interbacterial competition. “Antibacterial” T6SSs, such as the one elaborated by the opportunistic human pathogen, Serratia marcescens, confer on the secreting bacterium the ability to rapidly and efficiently kill rival bacteria. Identification of secreted substrates of the T6SS is critical to understanding its role and ability to kill other cells, but only a limited number of effectors have been reported so far. Here we report the successful use of label-free quantitative mass spectrometry to identify at least eleven substrates of the S. marcescens T6SS, including four novel effector proteins which are distinct from other T6SS-secreted proteins reported to date. These new effectors were confirmed as antibacterial toxins and self-protecting immunity proteins able to neutralize their cognate toxins were identified. The global secretomic study also unexpectedly revealed that protein phosphorylation-based post-translational regulation of the S. marcescens T6SS differs from that of the paradigm, H1-T6SS of Pseudomonas aeruginosa. Combined phosphoproteomic and genetic analyses demonstrated that conserved PpkA-dependent threonine phosphorylation of the T6SS structural component Fha is required for T6SS activation in S. marcescens and that the phosphatase PppA can reverse this modification. However, the signal and mechanism of PpkA activation is distinct from that observed previously and does not appear to require cell–cell contact. Hence this study has not only demonstrated that new and species-specific portfolios of antibacterial effectors are secreted by the T6SS, but also shown for the first time that PpkA-dependent post-translational regulation of the T6SS is tailored to fit the needs of different bacterial species.
Highlights
From the ‡Division of Molecular Microbiology and §MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
We report the analysis of the T6SS-dependent secretome of S. marcescens by label-free quantitation (LFQ) mass spectrometry and describe the identification and characterization of four novel T6SS-secreted effector proteins
It was reported previously that a deletion of pppA in P. aeruginosa caused a T6SS hypersecreting phenotype, which was used in a mass spectrometry-based approach to identify successfully P. aeruginosa T6SS substrates [31]
Summary
T6SS, Type VI secretion system; FDR, false discovery rate; LFQ, label-free quantitation; ORF, open reading frame; TCEP, tris(2-carboxyethyl)phosphine. We report the analysis of the T6SS-dependent secretome of S. marcescens by label-free quantitation (LFQ) mass spectrometry and describe the identification and characterization of four novel T6SS-secreted effector proteins These were confirmed as antibacterial toxins and specific immunity proteins were identified. This global secretomic analysis, in combination with genetic and phosphoproteomic analyses, demonstrated that a post-translational phosphorylation system influences the ability of the S. marcescens T6SS to secrete effector proteins. This system uses homologs of the P. aeruginosa PpkA, PppA and Fha components, the circumstances and impact of Fha phosphorylation were shown to vary between organisms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.