Abstract

The fibroin-based silk fibers of weaver ants are an alternative biomaterial to be investigated and explored for potential biomedical applications. In this context, the silk fibers from the nest of the weaver ant Camponotus textor was solubilized and fractionated by gel permeation. The different fractions were collected, pooled and submitted to analysis with a series of biochemical methods, nuclear magnetic resonance (NMR) spectroscopy, analytical proteomic strategies, and data treatment with bioinformatic tools to perform the structural characterization of the fibroin-based silk fibers produced by the ant. Our data demonstrated the identification of one fibroin proteoform in the ant silk fibers. The protein chracterized as a glycoprotein with MW around 40 kDa and presenting 66% (w/w) of total sugars attached to it through O-linked carbohydrates. The 3D of protein was modeled, revealing a structure predominantly constituted of coiled-coil secondary units in the whole model, featuring at least four superhelices (arrangement with multiple α-helices). The scientific outcomes reported herein may be relevant for the development of novel approaches for the synthetic or recombinant production of novel silk-based polymers for biomedical applications. Biological significanceThe present investigation significantly expanded knowledge regarding to the fibroin-based silk fibers from weaver ants, contributing to improvements in our understanding of the properties and characteristics of these silk fibers. For example, as reported here, carbohydrates were detected in the ants' silk for the first time presenting the fibroin as a glycoprotein. Moreover, the 3D structure provided new insights into the secondary structures considering the whole model of the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.