Abstract

Pseudorabies virus (PRV) poses a significant threat to livestock and even humans. Baicalin, a bioactive flavonoid glycoside with medicinal potential, has been reported to have various biological activities. However, its inhibitory effect on PRV remains poorly understood. In this study, we proved that baicalin effectively inhibits PRV infection. Proteomic analysis revealed that baicalin reduces the expression of 14 viral proteins, which are associated with virus replication, release and immune evasion. Furthermore, the abundance of 116 host proteins was altered by PRV infection, but restored to normal levels after treatment with baicalin. Pathway analysis indicated that baicalin mitigates reactive oxygen species (ROS) and suppresses abnormal mitochondrion by reducing the expression of NFU1 iron‑sulfur cluster scaffold homolog (NFU1) protein induced by PRV. Notably, baicalin also activates the complete coagulation cascade by increasing the expression of coagulation factor III (F3) protein and enhances nucleoplasm by upregulating the expression of solute carrier family 3 member 2 (SLC3A2) and CCAAT enhancer binding protein beta (CEBPB) proteins, contributing to its inhibitory effects on PRV. Our findings implied that baicalin has the potential to be developed as an anti-PRV drug and provide insights into the underlying molecular basis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.