Abstract

Experimental evidence indicates that vitamin D may have a beneficial role in pancreatic β-cell function. In the present study, stable isotope labelling by amino acids in cell culture (SILAC) in combination with liquid chromatography-tandem mass spectrometry was used to quantitatively assess the impact of the active vitamin D metabolite, 1,25-(OH)2 D3 , on global protein expression in INS-1E cell secretome. Twenty-one proteins were found up-regulated (≥1.5 fold changes) and three down-regulated (≤0.67) after treatment of INS-1E cells with 1,25-(OH)2 D3 . Up-regulation of proteins implicated in β-cell growth and proliferation, such as IGF2, IGFBP7 and gelsolin, suggest that 1,25-(OH)2 D3 has a positive effect on β-cell growth and proliferation. Moreover, modulations of several proteins implicated in prohormone processing and insulin exocytosis (IGF2, IGFBP7, Scg5, ProSAAS, Fabp5, Ptprn2 and gelsolin) appear to support the hypothesis that 1,25-(OH)2 D3 plays positive modulatory role in insulin processing and secretion. Together, we reveal a number of novel vitamin D-regulated proteins that may contribute to a better understanding of the reported beneficial effects of vitamin D on pancreatic β-cells. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.