Abstract

The endoplasmic reticulum (ER) is the main source for the storage and release of intracellular calcium in neurons and, thus, contributes to the functionality of a diverse set of pathways that control critical aspects of central nervous system function including but not limited to gene expression, neurotransmission, learning, and memory. ER-derived proteins obtained after subcellular fractionation of mouse brain homogenate were digested with trypsin and the corresponding peptides fractionated by strong cation exchange chromatography followed by LC-MS/MS analysis on a hybrid linear ion trap--Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. A comprehensive catalogue representing 1914 proteins was generated from this particular proteomic analysis using identification criteria that corresponded to a false positive identification rate of 0.4%. Various molecular functions and biological processes relevant to the ER were identified upon gene ontology (GO)-based analysis including pathways associated with molecular transport, protein trafficking and localization, and cell signaling. Comparison of the 2D-LC-MS/MS results with those obtained from shotgun LC-MS/MS analyses demonstrated that most molecular functions and biological processes were represented via GO analysis using either methodology. Results from this comparison as well as a focused investigation into components of calcium-mediated signaling in the mouse brain ER are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.