Abstract

Endoplasmic reticulum (ER) stress occurs upon increased levels of unfolded proteins and results in activation of cellular responses such as the unfolded protein response (UPR) and ER-associated protein degradation (ERAD). To examine ER stress, we performed a quantitative proteome analysis of human neuroblastoma cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with SDS-PAGE and LC-MS/MS. Proteins associated with the ER were overrepresented in the dataset of altered proteins. In particular, ER chaperones responsible for protein folding were significantly upregulated in response to ER stress. The important ER stress regulator 78 kDa glucose-regulated protein (GRP-78 or BiP) was highly upregulated together with several proteins that have been found to form a multiprotein complex with BiP including cyclophilin B, DnaJ homolog subfamily B member 11, endoplasmin, hypoxia upregulated protein 1, protein disulfide isomerase and protein disulfide isomerase A4 upon tunicamycin-induced ER stress. Furthermore, seven aminoacyl-tRNA synthetases and five proteins belonging to the Sec61 complex were increased in response to tunicamycin-induced ER stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.