Abstract

We present a coarse-grained model to describe the adsorption and deformation of proteins at an air-water interface. The interface is introduced empirically in the form of a localized field that couples to a hydropathy scale of amino acids. We consider three kinds of proteins: protein G, egg-white lysozyme, and hydrophobin. We characterize the nature of the deformation and the orientation of the proteins induced by their proximity to and association with the interface. We also study protein diffusion in the layer formed at the interface and show that the diffusion slows with increasing concentration in a manner similar to that for a colloidal suspension approaching the glass transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.