Abstract
Lipoic acid is a covalently attached cofactor essential for the activity of 2-oxoacid dehydrogenases and the glycine cleavage system. In the absence of lipoic acid modification, the dehydrogenases are inactive, and aerobic metabolism is blocked. In Escherichia coli, two pathways for the attachment of lipoic acid exist, a de novo biosynthetic pathway dependent on the activities of the LipB and LipA proteins and a lipoic acid scavenging pathway catalyzed by the LplA protein. LipB is responsible for octanoylation of the E2 components of 2-oxoacid dehydrogenases to provide the substrates of LipA, an S-adenosyl-L-methionine radical enzyme that inserts two sulfur atoms into the octanoyl moiety to give the active lipoylated dehydrogenase complexes. We report that the intact pyruvate and 2-oxoglutarate dehydrogenase complexes specifically copurify with both LipB and LipA. Proteomic, genetic, and dehydrogenase activity data indicate that all of the 2-oxoacid dehydrogenase components are present. In contrast, LplA, the lipoate protein ligase enzyme of lipoate salvage, shows no interaction with the 2-oxoacid dehydrogenases. The interaction is specific to the dehydrogenases in that the third lipoic acid-requiring enzyme of Escherichia coli, the glycine cleavage system H protein, does not copurify with either LipA or LipB. Studies of LipB interaction with engineered variants of the E2 subunit of 2-oxoglutarate dehydrogenase indicate that binding sites for LipB reside both in the lipoyl domain and catalytic core sequences. We also report that LipB forms a very tight, albeit noncovalent, complex with acyl carrier protein. These results indicate that lipoic acid is not only assembled on the dehydrogenase lipoyl domains but that the enzymes that catalyze the assembly are also present "on site."
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.