Abstract

This study aimed to explore potential drug targets of Streptococcus suis at the system level. A homologous protein mapping method was used in the construction of a protein-protein interaction (PPI) network of S. suis, which presented 1147 non-redundant interaction pairs among 286 proteins. The parameters of PPI networks were calculated and showed scale-free network properties. In all, 41 possibly essential proteins identified from 47 highly connected proteins were selected as potential drug target candidates. Of these proteins, 30 were already regarded as drug targets in other bacterial species. Six transporters with high connections to other functional proteins were identified as probably not essential but important functional proteins. Afterward, the subnetwork centred with cell division protein FtsZ was used in confirming the PPI network through bacterial two-hybrid analysis. The predicted PPI network covers 13·04% of the proteome in S. suis. The selected 41 potential drug target candidates are conserved between S. suis and several model bacteria. The predictions included proteins known to be drug targets, and a verifying experiment confirmed the reliability of predicted interactions. This work is the first to present systematic computational PPI data for S. suis and provides potential drug targets, which are valuable in exploring novel anti-streptococcus drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.