Abstract
[EN] Articular cartilage is a tissue with low capacity for self-restoration due to its avascularity and low cell population. It is located on the surface of the subchondral bone covering the diarthrodial joints. Degeneration of articular cartilage can appear in athletes, in people with genetic degenerative processes (osteoarthritis or rheumatoid arthritis) or due to a trauma; what produces pain, difficulties in mobility and progressive degeneration that finally leads to joint failure. Self-restoration is only produced when the defect reaches the subchondral bone and bone marrow mesenchymal stem cells (MSCs) invade the defect. However, this new formed tissue is a fibrocartilaginous type cartilage and no a hyaline cartilage, which finally leads to degeneration. Transplantation of autologous chondrocytes has been proposed to regenerate articular cartilage but this therapy fails mainly to the absence of a material support (scaffold) for the adequate stimulation of cells. Matrix-induced autologous chondrocyte implantation uses a collagen hydrogel as scaffold for chondrocytes; however, it does not have the adequate mechanical properties, does not provide the biological cues for cells and regenerated tissue is not articular cartilage but fibrocartilage. Different approaches have been done until now in order to obtain a scaffold that mimics better articular cartilage properties and composition. Hydrogels are a good option as they retain high amounts of water, in a similar way to the natural tissue, and can closely mimic the composition of natural tissue by the combination of natural derived hydrogels. Their three-dimensionality plays a critical role in articular cartilage tissue engineering to maintain chondrocyte function, since monolayer culture of chondrocytes makes them dedifferentiate towards a fibroblast-like phenotype secreting fibrocartilage. Recently, injectable hydrogels have attracted attention for the tissue engineering of articular cartilage due to their ability to encapsulate cells, injectability in the injury with minimal invasive surgeries and adaptability to the shape of the defect. Following this new approach we aimed at synthesizing two new families of injectable hydrogels based on the natural protein gelatin for the tissue engineering of articular cartilage. The first series of materials consisted on the combination of injectable gelatin with loose reinforcing polymeric microfibers to obtain injectable composites with improved mechanical properties. Our results demonstrate that there is an influence of the shape and distribution of the fibers in the mechanical properties of the composite. More importantly bad fiber-matrix interaction is not able to reinforce the hydrogel. Due to this, our composites were optimized by improving matrix-fiber interaction through a hydrophilic grafting onto the microfibers, with very successful results. The second series of materials were inspired in the extracellular matrix of articular cartilage and consisted of injectable mixtures of gelatin and hyaluronic acid. Gelatin…
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.