Abstract

Zinc ions have an insulin-like (insulinomimetic) effect. A particularly sensitive target of zinc ions is protein tyrosine phosphatase 1B (PTP 1B), a key regulator of the phosphorylation state of the insulin receptor. Modulation of insulin signaling by zinc chelating agents and the recognition of temporal and spatial fluctuations of zinc suggest a physiological role of zinc in insulin signal transduction. Tyrosine phosphatases seem to be regulated jointly by insulin-induced redox (hydrogen peroxide) signaling, which results in their oxidative inactivation, and by their zinc inhibition after oxidative zinc release from other proteins. In diabetes, the significant oxidative stress and associated changes in zinc metabolism modify the cell's response and sensitivity to insulin. Zinc deficiency activates stress pathways and may result in a loss of tyrosine phosphatase control, thereby causing insulin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.